

Investigating steam penetration into dental handpieces

PhD student: Sandra Winter

Supervision: Prof. Andrew J. Smith, Brian Kirk PhD, David Lappin PhD, George Mc Donagh

Industrial scholarship in partnership with W&H

The role of the handpiece

Handpiece types:

Dental turbine: e.g. used to drill tooth

Dental slow speed motor: e.g. used to polish teeth

Straight handpiece: e.g. used for oral surgery

Background I

- Handpieces weak link in the dental infection prevention chain
- Handpiece cleaning and sterilization challenging = access to internal components and lumens e.g., stainless steel, D=0.9 mm & L=83 mm, in air driven turbines
- Weight: 42 100g

Background II

- Critical to remove air to achieve sterilization parameters (Perkins et al. 1956, Bowie et al. 1963)
- Controversies exist on the role of air removal during handpiece sterilization for patient safety (Larsen et al 1997, Andersen et al 1999, Smith et al 2007; Smith 2013)

Background III

- The risk of cross contamination has been raised = biofouling inside handpieces
 - HIV (Lewis et al 1992 and 1995)
 - Herpes simplex (Epstein et al 1993, 1995, Hu et al 2007)
 - Vegetative bacteria (Kellett et al 1980, Herd et al 2007, Chin et al 2006)

Aims

- Investigate steam penetration into dental handpieces
- Investigate steam penetration into process challenge devices (PCD's)
- Using N type and B type bench-top steam sterilization process.

Outline

- Thermometric study
 - Investigation steam penetration/air removal in dental handpieces by measuring temperature/time changes
- Chemical indicator study
- Biological indicator study

- Method:
- Type N machines (N=1)
- Handpiece types/makes:
 - Turbines (N=3)
 - Slow speed motors (N=2)
- Loads
 - Small
 - Full (as per sterilizer manufacturer's instructions)
- Orientation of handpieces: horizontal in center of chamber
- Control BDT

Thermocouple investigations

- Thermocouple = T type (2 mm x 1 mm, standard error less than 1°C)
 - Air channel d=2.3 mm, L=80 mm
- Thermocouple = T type (D = 0.8 mm,
 standard error less than 1°C)
 - Spray channels d=0.9 mm, L=83 mm

Data logger investigations

- Temperature sensors
 (Teflon, d=2 mm, approx. L=30 cm, accuracy ± 0.05°C)
- Air channel d=2.3 mm, L=80 mm

Pressure sensors (accuracy 0.25%)

Calibration thermocouples:

Calibration equipment used

- Pressure calibrator (DRUCK)
- Hot block (AMETEK)
- Data logger (ANVILLE 825)

Calibration procedure:

Thermocouples calibrated every 10 cycles

Calibration data loggers:

Denmark

Spray channel

D=0.9 mm,

L=83 mm,

V=0.045 ml

→Thin

thermocouples

Drive air channel D=2.3 mm,

L=80 mm,

V=332 ml

→ Regular thermocouples

→ellab data loggers

Thermometric study - Control

Type N BDT

Thermometric study - Results

N type Manufacturer A (holding time 6.5 min)	Handpiece Manufacturer A (turbine) N = 192	Handpiece Manufacturer B (turbine) N = 9	Handpiece Manufacturer C (turbine) N = 9	Handpiece Manufacturer D (motor) N = 9	Handpiece Manufacturer A (motor) N = 9
Temperature lag of handpiece to chamber at 134°C	15 – 100 sec	23 – 80 sec	18 – 147 sec	13 – 38 sec	-1 – 8 sec

Temperature difference chamber vs handpieces in type N process

Time (min:sec)

Thermometric Study - Results

Outline

- Thermometric study
- Chemical indicator study

investigate if chemical indicator strips (used in the Browne helix pcd, class 2) perform a pass at different locations inside the handpiece using a type N sterilization process

Biological indicator study

determining whether a non-vacuum sterilization process effectively inactivates spores of *Geobacillus stearothermophilus*

- Method:
- Type N machines (N=4)
- Type B machines (N=1)
- Handpiece types/makes:
 - Turbines (N=1)
 - Slow speed motors (N=1)
 - Surgical handpiece (N=1)
- Loads
 - Small
 - Full (as per sterilizer manufacturer's instructions)
- Orientation of handpieces: horizontal in center of chamber
- Control Browne's helix pcd, BDT

Method:

- ellab data loggers (teflon, D = 2 mm)
- Browne's Helix chemical indicators (class 2)
- Geobacillus stearothermophilus spores on paper strips (Excelsior, population 2.5 x 10⁶ spores per strip, D₁₂₁= 2.3 min)

- Method:
- Chemical indicators:
 - Visual assessment
- Spore recovery method:
 - TSB at 56°C
 - Checked for growth every 24 h over 8 days
 - Plated onto Tryptone Soy Agar → Gram Stain

Air turbine

Drive air channel
50 mm x 2 mm

Spray channel
50 mm x 0.8 mm

Turbine head
5 mm x 1.5 mm

d=2.3 mm, l=80 mm, v=0.332 ml

CI and BI Study - control

CI and BI Study - Results

1 + 1 (safety) min at 134°C (Perkins, 1956) → 2 + 1 (safety) min at 134°C (1st MRC repo

3 sets of 3 different handpieces per cycle	Type N Manufacturer A	Type N Manufac B
Holding time at 134°C	6 min 30 sec	6 min 30
Temperature lag of handpiece to chamber at 134°C	15 – 100 sec	25 – 39 s
BI fail	0/108	1/108
CI fail	0/108	0/108

^{*} straight surgical handpiece back

Conclusions

- Steam penetration into dental handpiece lumens is impaired using type N process.
- More difficult to ensure sterility in surgical handpieces.
- It can not be assumed that all type N machines and all handpiece types are compatible.

Acknowledgements

Stefan Wimmer Charles Meadows

Brian Kirk, PhD

Geoff Shaw

students and staff

